Interference of Ha-ras with inositol trisphosphate-mediated Ca²⁺-release

Karl Maly, Alexander Kiani, Hermann Oberhuber and Hans Grunicke

Institute of Medical Chemistry and Biochemistry, A-6020 Innsbruck, Austria

Received 8 August 1991

Expression of a transforming Ha-ras by dexamethasone in NIH3T3 cells transfected with a glucocorticoid-inducible Ha-ras construct results in a rapid desensitization of the intracellular Ca²⁺-mobilizing system to bombesin. This effect precedes the down-modulation of inositol trisphosphate (IP₃) formation by several hours and is, therefore, not explained by an uncoupling of phosphoinositidase C. It is demonstrated that expression of Ha-ras attenuates the Ca²⁺-release by IP₃ in permeabilized cells. The IP₃ concentration required for half-maximal Ca²⁺-release is doubled in Ha-ras expressing cells. Maximal Ca²⁺-release which is obtained with 2 μM IP₃ in control cells requires 10 μM IP₃ in cells expressing Ha-ras. The desensitization of the IP₃ receptors coincides with the desensitization of the Ca²⁺-mobilizing system to bombesin. The results indicate that the Ha-ras mediated desensitization of the Ca²⁺-releasing system to bombesin is – at least in part – caused by a decrease in the affinity of the IP₃ receptor to inositol trisphosphate.

NIH3T3 fibroblast; Harvey-ras; Calcium; Inositolphosphate; Bombesin

1. INTRODUCTION

Expression of a transforming Ha-ras has been shown to desensitize the intracellular Ca^{2+} -mobilizing system to serum growth factors or bombesin [1,2]. This phenomenon proved to be specific for transforming ras and was not observed in cells overexpressing the Ha-ras proto-oncogene [1]. Transforming ras genes have been shown to reduce the inositol phosphate generation in response to platelet-derived growth factor (PDGF) or prostaglandin $F_{2\alpha}$ and this effect has been attributed to a protein kinase C-mediated uncoupling of phosphoinositide hydrolysis by Ha-ras [3].

We have recently demonstrated, however, that the depression by Ha-ras of the bombesin-induced IP₃ response is not correlated to the down-modulation of the Ca²⁺ signal [4]. This was based on the finding that after expression of Ha-ras in a Ha-ras inducible system, the Ca²⁺-mobilization is already maximally suppressed when the IP₃-response is still unchanged. Down-modulation of the IP₃ response was found to be a relatively late phenomenon occurring 3-4 h later than the depression of the Ca²⁺ signal. In view of these data it was postulated that Ha-ras interferes with IP₃-mediated

Abbreviations: DMEM. Dulbecco's modified Eagle's medium; Dex, dexamethasone; EGTA, [ethylene-bis-(oxyethylene-nitrilo)]tetraacetic acid; FCS, fetal calf serum; PBS, Phosphate buffered saline; HBS, HEPES-buffered saline, HEPES, 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid; IP₃, inositol-1,4,5-trisphosphate; MMTV-LTR, mouse mammary tumor virus long terminal repeat.

Correspondence address: H. Grunicke, Institute of Medical Chemistry and Biochemistry, Fritz Pregl Str. 3, A-6020 Innsbruck, Austria. Fax: (43) (512) 5072279.

Ca²⁺-release at the level of the IP₃ receptor. This assumption was supported by data demonstrating that IP₃-mediated Ca²⁺-release in permeabilized cells is indeed attenuated in cells expressing Ha-ras [4]. These findings, however, are in contrast to observations reported by Olinger et al. [5] who did not observe an inhibition by EJ-ras of the IP₃-mediated Ca²⁺-release after microinjection of IP3. Although the system employed by Olinger et al. differs in various aspects from the system employed by us, we considered this discrepancy unsatisfying and decided to study the IP₃mediated Ca2+-release as a function of the IP3 concentration in order to get some information whether Ha-ras affects the affinity of the receptor to IP₃. Such a mechanism would explain the differences if Olinger et al. employed saturating IP, concentrations whereas non-saturating IP, concentrations might have been used in our studies.

2. MATERIALS AND METHODS

2.1. Materials

1,4,5-Inositoltrisphosphate, dexamethasone, Na₃VO₄, saponin and bombesin were purchased from Sigma Chemicals, Munich, Germany. Myo-[2-³H]inositol (12.8 Ci/mmol) was from New England Nuclear, Dreicich, Germany. ⁴⁵Ca²⁺ (10-40 mCi/mg) from Amersham, UK. Fura-2 was purchased from Molecular Probes, Eugene, OR. Inositol-free DMEM was from Amimed, Basel, Switzerland.

2.2. Cell culture

NIH3T3 fibroblasts were transfected with the transforming human Ha-ras oncogene or the Ha-ras proto-oncogene subjected to the transcriptional regulation by glucocorticoids by in vitro recombination with the MMTV-LTR as described [6]. Cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% FCS in the presence of 5% CO₂. One day after plating, cells were made quiescent by incubation in inositol-free DMEM containing 0.5% FCS (in the case of

inositolphosphate measurement, see below) or DMEM plus 0.5% FCS (for Ca²⁺ determinations) for 48 h.

2.3. Determination of cytosolic Ca2+-concentrations

[Ca²⁺], was determined by fluorescence spectrophotometry employing fura-2 as described [1,9].

2.4. Measurements of ⁴⁵Ca²⁺-uptake and IP₃-induced Ca²⁺-release in permeabilized cells

NIH3T3 cells, transfected with the transforming Ha-ras were grown in 35-mm culture dishes (6-well plates) at a density of 1.4-1.8×10⁵ cells per dish. Where indicated, Ha-ras expression was induced by 1 μ M dexamethasone for 2 or 24 h. 45Ca2+-uptake and IP3-induced Ca2+release experiments were performed as described [4]. At first the medium was removed and the cells were washed with 1 ml buffer A (buffer A: 20 mM NaCl, 100 mM KCl, 5 mM MgSO₄, 1 mM Na₂HPO₄, 25 mM HEPES, 1% BSA, pH 7.2). After a preincubation period of 10 min in buffer A in the presence of 1 mM EGTA, the experiment was started by incubation of the cells in 1 ml buffer B (buffer B: buffer A supplemented with 0.02% saponin, 3 mM ATP, 1 μCi 45Ca²⁺/ml). Where indicated IP, and 0.1 mM vanadate were added. The experiment was stopped by removing the buffer B and washing 3 × with buffer A (-BSA). Then the cells were collected and one fraction was added to 9 ml of scintillation fluid and counted for 45Ca2+-radioactivity (Beckman LS3801). The second fraction was used for determination of protein content as described [10].

2.5. Isolation of inositolphosphates

Inositolphosphates were analyzed by HPLC and quantified by mass measurement as described previously [4,11].

3. RESULTS AND DISCUSSION

NIH 3T3 were transfected with a transforming Haras recombined in vitro with a MMTV-LTR sequence [6,7]. Administration of dexamethasone leads to an accumulation of p21ras within 1-3 h following addition



Fig. 1. Ca^{2*} -release and IP_3 -formation by bombesin after the induction of the Ha-ras oncogene. NIH 3T3 cells were grown and prepared as described in section 2. The expression of the Ha-ras oncogene was induced by the addition of 1 μ M decamethasone. IP₃ was determined 10 s after stimulation of the cells by bombesin (basal value was 2552.34 dpm/10⁵ cells). Values of Δ peak Ca^{2*} were calculated as the difference between the maximum Ca^{2*} level after bombesin stimulation and the resting Ca^{2*} level in the absence of extracellular Ca^{2*} (HBS with 10 mM EGTA). The absolute value of Δ peak Ca^{4*} at time 0 was 380±25 mM. Bars indicate means \pm standard error ($n \ge 5$).

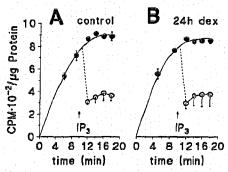


Fig. 2. 45 Ca²⁺-uptake and IP₃-induced 45 Ca²⁺-release of permeabilized NIH3T3 cells. NIH3T3 cells, transfected with the transforming Ha-ras were prepared for the experiment as described in section 2. Steady state distributions of ATP-dependent 45 Ca²⁺-uptake (\bullet) are attained within approximately 12 min at 25°C. Addition of IP₃ (\bigcirc ; 10 μ M, final concentration) in the presence of 0.1 mM vanadate immediately induces 45 Ca²⁺-release from intracellular, IP₃-sensitive stores. Data represent the mean \pm SE ($n \ge 3$).

of the hormone as previously described [4]. Figure 1 demonstrates that 3 h after expression of Ha-ras a significant depression of the bombesin-induced mobilization of Ca²⁺ from intracellular stores can be observed. The depression of the Ca²⁺ signal is not explained by a reduction of IP₃ formation. As shown in Fig. 1 the bombesin-induced increase in IP₃ generation is unaffected by Ha-ras 3 h following expression of the oncogene. In accordance with previous results from this laboratory [4] it has to be concluded that the rapid

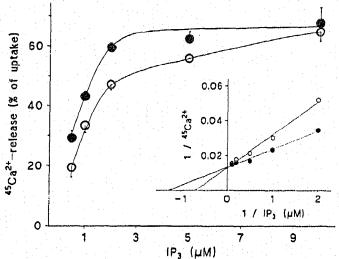


Fig. 3. ⁴⁵Ca²⁺-release from permeabilized NIH3T3 cells as a function of IP₃ concentration. NIH3T3 cells, transfected with the transforming Ha-ras were prepared for this experiment as described in the legend to Fig. 2. After attainment of steady state distributions of ATP-dependent ⁴⁵Ca²⁺-uptake, ⁴⁵Ca²⁺-release was stimulated by addition of 1,4,5-IP₃. ⁴⁵Ca²⁺-release was calculatred as the difference between the ⁴⁵Ca²⁺-uptake and the residual ⁴⁵Ca²⁺ after IP₃ stimulation (2 min incubation) at concentrations as indicated. Data (•, control; 0, 24 h after induction of the transforming Ha-ras by dexamethasone) represent the mean of at least 5 independent experiments ±SE. The reciprocal presentation of the data is depicted in the inset.

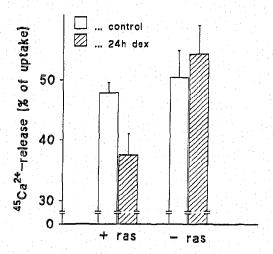


Fig. 4. 45 Ca²⁺-release by IP₃ from permeabilized NIH3T3 control cells and Ha-ras transfected NIH3T3 cells. NIH3T3 cells, either not transfected (-ras) or transfected with the transforming Ha-ras (+ras) were prepared for 45 Ca²⁺-release experiments as described in the legend to Fig. 2. Where indicated, the cells were treated with 1 μ M dexamethasone for 24 h causing expression of the Ha-ras in the transfected cell line (+ras). 45 Ca²⁺-release was stimulated by addition of 1 μ M IP₃. Data represent the mean \pm SE ($n \ge 8$).

desensitization of the Ca²⁺-mobilizing system to bombesin by Ha-ras is not the result of an uncoupling or an inhibition of phosphoinositidase C by Ha-ras.

In search for alternative mechanisms which could be responsible for the attenuation of the bombesin-induced Ca²⁺-release by Ha-ras, the effect of the oncogene on IP₃-mediated Ca²⁺-release was investigated. In Fig. 2 (panels A and B) the uptake of ⁴⁵Ca²⁺ into saponin-permeabilized cells is depicted. Under the conditions

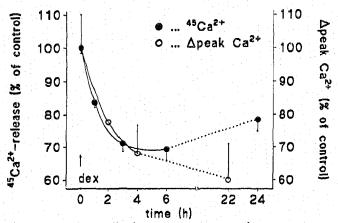


Fig. 5. Time course of ⁴⁵Ca^{2*}-release by IP₃ and Ca^{2*}-mobilization by bombesin after induction of p21*ras*. NIH3T3 cells transfected with the transforming Ha-*ras* were grown and prepared for determination of the cytosolic Ca^{2*} concentration of the ⁴⁵Ca^{2*}-release as described in the legends to Figs. 1 and 2. p21*ras* was induced by addition of 1 μM dexamethasone (dex) for times as indicated. Data, (•) ⁴⁵Ca^{2*}-release by IP₃, (a) Ca^{2*}-mobilization by bombesin, represent the mean of at least 3 independent experiments ±SE.

used, 45Ca2+-uptake is ATP-dependent and occurs predominantly (≥80%) into antimycin-resistant, non-mitrochondrial compartments (data not shown). As can be seen, cells overexpressing Ha-ras (panel B) accumulate Ca²⁺ to the same level as corresponding controls (panel A) and addition of 10 μ M IP₃ releases approx. 60% of the total stored ⁴⁵Ca²⁺. Figure 3 shows the Ca²⁺-release as a function of the IP3 concentration. Expression of Ha-ras does not affect the total IP₃-sensitive Ca²⁺ pool. At saturating IP, concentrations, identical amounts of Ca²⁺ can be released in cells expressing p21ras and in non-induced controls. However, cells overexpressing Ha-ras require higher IP3 concentrations for maximal Ca²⁺-release than the corresponding controls. In control cells, 2 µM IP₃ is sufficient for maximal Ca²⁺-release whereas 10 µM IP₃ is required to reach this level after expression of Ha-ras. The data from Fig. 3 suggest a decrease in the affinity to IP₃ in ras-expressing cells. Employing the double reciprocal plot shown in Fig. 3, the concentration for half-maximal Ca2+ release was determined as 0.68 µM IP3 for the controls and 1.27 µM IP₃ for Ha-ras-expressing cells respectively. The decrease in IP3 sensitivity is not a direct effect of dexamethasone. This is shown in Fig. 4 demonstrating that addition of dexamethasone to non-transfected cells (-ras) does not interfere with IP₃-mediated Ca²⁺release.

The Ha-ras-mediated desensitization of the Ca2+-mobilizing system to bombesin is a relatively early phenomenon following induction of p21ras by dexamethasone. As shown in Fig. 5 the time course of the desensitization of the ⁴⁵Ca²⁺-release to 1 µM IP₃ closely follows the time course for the reduction of Ca2+ mobilization in response to bombesin in ras-expressing cells. This is in accordance with the kinetics of the appearance of p21ras itself [4]. The extent of the desensitization to IP, does not seem to account completely for the depression of the Ca2+ signal by Ha-ras. The data strongly suggest, however, that the observed Ha-ras-mediated decrease in IP₃ affinity contributes to the reduction of the Ca²⁺ signal in response to bombesin in Ha-ras-expressing cells. The permeabilized cells employed here may not totally reflect the biological situation in intact cells. Experiments with isolated ER-vesicles could yield clearer information on the actual IP, concentration at the corresponding receptors. Furthermore, information by which the mechanism of Ha-ras interferes with IP₁-mediated Ca2+-release are necessary. It is still unclear whether the phenomenon described here is a direct effect of ras or whether it represents a phenomenon shared by many cells progressing from G_0 into G_1 perhaps associated with an activation of protein kinase C. It should be emphasized, however, that ras-like small G-proteins have been shown to be involved in intracellular Ca2+ transport [8]. It cannot be excluded, therefore, that ras is indeed biologically involved in the regulation of Ca2+ signaling mechanisms.

Acknowledgement: We thank Elisabeth Kindler for excellent assistance.

REFERENCES

- Maly, K., Doppler, W., Oberhuber, H., Meusburger, H., Hofmann, J., Jaggi, R. and Grunicke, H.H. (1988) Mol. Cell. Biol. 8, 4212-4216.
- [2] Maly, K., Oberhuber, H., Doppler, W., Hoflacher, J., Jaggi, R., Groner, B. and Grunicke, H. (1988) Adv. Enzyme Regul. 27, 121-131.
- [3] Parries, G.S., Hoebel, R., Racker, E. (1987) Proc. Natl. Acad. Sci. USA 84, 2648-2652.

- [4] Oberhuber, H., Maly, K., Überall, F., Hoflacher, J., Kiani, A. and Grunicke, H.H. (1991) J. Biol. Chem. 266, 1437-1442.
- [5] Olinger, P.L., Benjamin, C.W., Gorman, R.R. and Connor, J.A. (1989) J. Cell. Physiol. 139, 335-345.
- [6] Jaggi, R., Salmons, R., Muellener, D. and Groner, B. (1986) EMBO J. 5, 2609-2616.
- [7] Doppler, W., Jaggi, R. and Groner, B. (1987) Gene 54, 145-151.
- [8] Gosh, T.K., Mullaney, J.M., Tarazi, F.I. and Gill, D.L. (1989) Nature 340, 236-239.
- [9] Grynkiewicz, G., Poenie, N. and Tsien, R.Y. (1985) J. Biol. Chem. 260, 3440-3450.
- [10] Bradford, M.M. (1976) Anal. Biochem. 72, 248-254.
- [11] Heslop, J.P., Irvine, R.F., Tashjian Jr, A.H. and Berridge, M.J. (1985) J. Exp. Biol. 119, 395-401.